Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Barteek_k
Dołączył: 04 Lis 2009
Posty: 29
Przeczytał: 0 tematów
Ostrzeżeń: 0/5 Skąd: KRK Płeć: Mężczyzna
|
Wysłany: Sob 12:28, 04 Gru 2010 Temat postu: Ekomat - 13.12.2010 |
|
|
Na moodlach jest informacja, że termin egzaminu został wyznaczony na 13.12.2010 (poniedziałek), godz. 14.50-16.25, sala 9 Paw. Sportowy
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
|
 |
bd
Dołączył: 30 Lis 2009
Posty: 15
Przeczytał: 0 tematów
Ostrzeżeń: 0/5
|
Wysłany: Pon 10:13, 06 Gru 2010 Temat postu: |
|
|
JAK JEST KLUCZ DO MOODLE'A
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
lucy
Dołączył: 08 Lis 2009
Posty: 19
Przeczytał: 0 tematów
Ostrzeżeń: 0/5 Skąd: 1011 Płeć: Kobieta
|
Wysłany: Pon 22:21, 06 Gru 2010 Temat postu: |
|
|
EkmatKrDUEk2001
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
Grzesiek
Dołączył: 23 Paź 2009
Posty: 68
Przeczytał: 0 tematów
Ostrzeżeń: 0/5
Płeć: Mężczyzna
|
Wysłany: Pon 22:26, 06 Gru 2010 Temat postu: |
|
|
Mógłby ktoś napisać co było na dzisiejszym wykładzie? Z czego będzie egzamin i w jakiej formie,
Z góry dzięki
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
lucy
Dołączył: 08 Lis 2009
Posty: 19
Przeczytał: 0 tematów
Ostrzeżeń: 0/5 Skąd: 1011 Płeć: Kobieta
|
Wysłany: Śro 12:24, 08 Gru 2010 Temat postu: |
|
|
na egzaminie beda 4 zadania z treścią z zakresu:
- modele równowagi -> metody macierzowe (w treści zadania będzie podane jaką metodą należy rozwiązać zadanie)
- zagadnienia statyki porównawczej + ogólne funkcje
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
Grzesiek
Dołączył: 23 Paź 2009
Posty: 68
Przeczytał: 0 tematów
Ostrzeżeń: 0/5
Płeć: Mężczyzna
|
Wysłany: Śro 16:58, 08 Gru 2010 Temat postu: |
|
|
Dzięki wielkie,
1) chodzi o metody 1- po przez macierz dopełnień 2 - podstawienie do tego wzoru i wyliczanie np. Y = |Ay| / |A| ??
2) statystyka porównawcza to jakiego typu zadania? chodzi o te z ćwiczeń 2,3 i 4? czyli dochodzenie do tego jak zmiana jednej zmiennej wpływa na wartość czegośtam?
mogłabyś rozwinąć "ogólne funkcje"?
Czy nie będzie nic z twierdzenia o funkcjach niejawnych?
Z góry dzięki za odpowiedź
Post został pochwalony 0 razy
|
|
Powrót do góry |
|
 |
|